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d7r* or 7TX* parentage. As a result, photochemical processes 
in fluid solutions above O0C cannot be anticipated from low 
temperature spectroscopic results. The determination of the 
range of applicability of these selection rules for radiation-
less transitions to other transition metal complexes awaits 
more definitive studies of the wavelength dependence of 
photoluminescence quantum yields and lifetimes (vide 
supra). Studies of this type, when coupled with time-re­
solved spectroscopy throughout the temperature region be­
tween — 196 and 25°C, will help to determine whether effi­
cient population of the lowest set of thermally equilibrated 
excited levels regardless of orbital parentage is general, as 
previously postulated,1'2 or whether the selection rules we 
have proposed are generally applicable. A firm experimen­
tal substantiation of the general pathways for radiationless 
deactivation in metal complexes is fundamental to under­
standing the photophysics and photochemistry of these mol­
ecules. 
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Mechanistic Photochemistry of 7,5-Unsaturated 
Ketones. Discovery of a Photo-Cope Reaction of 
/3-Oxa-7,u-enones and Its Implications for the 
Mechanism of Intramolecular Photocycloaddition 

Sir: 

Irradiation of 7,6-unsaturated ketones and aldehydes 
most often results in formation of 2-oxabicyclo[2.2.0]hex-
anes and/or 5-oxabicyclo[2.1.1]hexanes (eq 1).' The quan­
tum yields for these intramolecular photocycloaddition re­
actions are usually low, particularly for acyclic 7,5-en­
ones. Ia'b'' Srinivasan has reported, for example, a quantum 
yield of 0.006 for formation of oxetane 2 on irradiation of 
ketone l. la 

O A* 43 + ^ 5 (D 

One of the possible causes of the considerable inefficien­
cy in formation of 2-oxabicyclo[2.2.0]hexanes on photolysis 

of 7,5-enones is the intermediacy of a cyclic 1,4-biradical, 
e.g., 4, which undergoes 0-cleavage to regenerate the start-' 
ing 7,5-enone more efficiently than closure to the 2-oxabi-
cyclo[2.2.0]hexane (see eq 2).1'2 If such biradical partition-

major 
(2) 

ing does occur, then irradiation of a suitably labeled j8-oxa-
7,5-enone such as 5 should yield photo-Cope products, e.g., 
8,3 since in this case the cyclic 1,4-biradical, 6, is "symmet­
rical" and has two possible |S-cleavage pathways to yield 
7,5-enones (see eq 3).4 By measuring the quantum yields 

JU h» 
(3) 

for intramolecular photocycloaddition (5 —• 7 and 8 —• 7) 
and for photo-Cope reactions in both directions, i.e., 5 -«• 8 
and 8 -* S, the relative values of kg, ks, and Zc0x can be de­
termined. This establishes an upper limit on the extent to 
which cyclic 1,4-biradical 6 undergoes /3-cleavage and al­
lows the role of /3-cleavage from 6 in contributing to the in­
efficiency of intramolecular photocycloaddition of /3-oxa-
7,5-enones to be evaluated.5 

With these thoughts in mind, we have studied the photo­
chemistry of 7,5-enones 56 and 8.7 Irradiation of a pentane 
solution (0.08 M) of 3,5-dimethyl-4-oxa-5-hexen-2-one (5) 
at 313 nm for 5 hr results in 32% loss of 5 and a 27% yield 
of two new compounds, an intramolecular photocycloaddi­
tion product, 7,8 and the photo-Cope product, 8, in a ratio 
of 2.5:1 (eq 4).9 Prolonged irradiation leads to disappear­
ance of both the starting 7,5-enone 5 and the photo-Cope 
product 8, and formation of l,4,6-trimethyl-2,5-dioxabicy-

hv 

pentane 
7 + 8 

d> = 0.12 * = 0.04 
(4) 

clo[2.2.0]hexane (7) as the major product. Quantum yields 
for formation of 7 and 8 from photolysis of 5 in hexane to 
less than 5% conversion are found to be 0.12 and 0.04, re­
spectively.10 Similar irradiation of a pentane solution (0.08 
M) of 5,6-dimethyl-4-oxa-5-hexen-2-one, 8, for 4 hr leads 
to a 27% loss of 8 and a 20% yield of oxetane 7 and photo-
Cope product 5 formed in a 3.1:1 ratio (see eq 5).11 

!*ni™ $-<X13 # = 0.05 
(5) 

Quantum yields for formation of 7 and 5 from photolysis of 
8 in hexane to less than 5% conversion are measured to be 
0.13 and 0.05, respectively.10 Thus we note that |8-oxa-7,5-
enones 5 and 8 undergo competitive intramolecular photo­
cycloaddition and photo-Cope reactions. Although still 
overall an inefficient process, the efficiencies of intra­
molecular photocycloaddition for 5 and 8 are considerably 
greater than the efficiencies reported for other acyclic 7,5-
enones. la-b'' 

The formation of photo-Cope products upon irradiation 
of /3-oxa-7,5-enones S and 8 is consistent with the inter­
mediacy in these photolyses of 1,4-biradical 6, which parti­
tions between closure to bicyclo[2.2.0]hexane 7 and cleav­
age to (8-oxa-7,5-enones 5 and 8 in a ratio of approximately 
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3:1.2:1.12 The low values of the quantum yields for forma­
tion of photo-Cope products ($5—8 = 0.04, $8—5 = 0.05) 
make it clear that the bulk of the inefficiency in intramolec­
ular photocycloaddition of these /3-oxa-7,5-enones is not 
due to /3-cleavage of 1,4-biradical intermediate 6. Since ki­
netic studies indicate that the intramolecular oxetane for­
mation is an Si reaction and that trapping of the ketone 
'n,ir* state of 5 or 8 by the internal olefin is efficient,13 the 
low quantum yields for oxetane formation must result from 
inefficient reaction from some intermediate on the pathway 
to 7 other than the 7,5-enone 'n,x* state or biradical 6. The 
obvious candidate is an exciplex formed by interaction of 
the electrophilic half vacant oxygen atom of the n,ir* state 
and the electron-rich 7,5-double bond. Analogous exciplex-
es have been postulated as intermediates in intermolecular 
and intramolecular photocycloaddition reactions of ketones 
and electron-rich olefins.",2b'14 Our quantum yield mea­
surements indicate that the efficiency of formation of birad­
ical 6 from both exciplexes is at most 20%.15 The inefficien­
cy in proceeding from the exciplex to 6 could result from di­
rect decay of the exciplexes to the ground state of the start­
ing 7,6-enone and/or from competitive formation from the 
exciplexes of 1,4-biradicals in which oxygen is bonded to 
the 7-carbon, e.g., 9. Since our mass balances are high 
(>70%), formation of biradicals such as 9 followed by clo­
sure to a 2,5-dioxabicyclo[2.1.1]hexane cannot be a major 
pathway for decay of the exciplexes.16 Thus if biradicals 
with oxygen bonded to the 7-carbon are formed they must 
primarily undergo cleavage to regenerate starting 7,5-en-
ones. 

& 
9 

In summary, we have shown that acyclic /3-oxa-7,<5-en-
ones 5 and 8 undergo photo-Cope reactions in competition 
with inefficient intramolecular photocycloaddition to form 
dioxabicyclo[2.2.0]hexanes. Both photoreactions most like­
ly proceed through a common 1,4-biradical intermediate, 6. 
The bulk of the inefficiency in production of 1,4,6-tri-
methyl-2,5-dioxabicyclo[2.2.0]hexane is attributed to inef­
ficient formation of biradical 6 from an exciplex initially 
generated by interaction of the carbonyl 'n,ir* state with 
the internal olefin. 
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Synthesis and Characterization of a New Series of First 
Row Element Tetrahedral Mercaptide Complexes 

Sir: 

Tetrahedral, monomeric complexes of halide and pseudo-
halide ions with first row transition elements are well docu-
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